Унитарной группой (обозн.
) называется подгруппа группы
невырожденных линейных преобразований пространства
состоящая из так называемых унитарных линейных преобразований, то есть преобразований, сохраняющих эрмитово скалярное произведение в пространстве
А именно, если
— эрмитово скалярное произведение, то линейное преобразование
унитарное, если
Вариации и обобщения
- Если вместо эрмитова скалярного произведения взять произведение
- то полученная группа обозначается
Литература
- Гельфанд И. М. Лекции по линейной алгебре, — Любое издание.
- Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия (методы и приложения), — Любое издание.
- Мищенко А. С., Фоменко А. Т. Курс дифференциальной геометрии и топологии, — Факториал, Москва, 2000.
- Постников М. М. Линейная алгебра и дифференциальная геометрия, — Любое издание.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .